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Lead-acid batteries are widely used in conventional internal-combustion-engined vehicles and in some
electric vehicles. In order to improve the longevity, performance, reliability, density and economics of the
batteries, a precise state-of-charge (SoC) estimation is required. The Kalman filter is one of the techniques
used to determine the SoC. This filter assumes an a priori knowledge of the process and measurement noise

covariance values. Estimation errors can be large or even divergent when incorrect a priori covariance
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values are utilized. These estimation errors can be reduced by using the adaptive Kalman filter, which
adaptively modifies the covariance. In this study, an adaptive extended Kalman filter (AEKF) method is
used to estimate the SoC. The AEKF can reduce the SoC estimation error, making it more reliable than
using a priori process and measurement noise covariance values.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Lead-acid batteries, the oldest type of rechargeable battery,
were invented in 1859 by the French physicist Gaston Planté [1].
Lead-acid batteries are still widely used in electrical systems,
such as those employed in conventional internal-combustion-
engined vehicles and some electric vehicles. In order to improve
the longevity, performance, reliability, density and economics of
the batteries, an accurate state-of-charge (SoC) estimation is nec-
essary [2]. For these reasons, several methods of estimating the SoC
have been developed, e.g., coulomb counting, open-circuit voltage
(0OCV) measurement, impedance spectroscopy, electromotive force,
fuzzy logic, and the Kalman filter [1]. The Kalman filter can estimate
the SoC dynamically by means of a battery model [3]. Non-linear
Kalman filters, such as extended Kalman filters (EKF) [3-6] and
sigma-point Kalman filters [7,8], have been applied for non-linear
discrete battery models.

Generally, the Kalman filter assumes that the covariance of the
process and the measurement noise are already known. Covari-
ance values cannot, however, be identified exactly in most practical
applications. Furthermore, estimation errors can be large or even
diverge when an incorrect covariance is used [9]. None of the pre-
vious studies on SoC estimation has considered this covariance
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problem; the covariance values of the process and measurement
noise are assumed to be a priori known [3-5,7,8] or determined by
trial-and-error from experimental studies [6]. Nevertheless, these
approaches do not provide a practical solution to the problem.
This study evaluates the use of incorrect a priori covariance val-
ues for SoC estimation using the EKF. The SoC estimation error
caused by the covariance problem is reduced by adaptively modi-
fying the covariance values with an adaptive Kalman filter [9].

2. Battery model
2.1. Battery model structure

Abattery model is required in order to apply the Kalman filter to
estimation of the SoC. In the present study, the zero-state hysteresis
model structure was used for a discrete lead-acid non-linear bat-
tery model [4,5]. Egs. (1) and (2) represent the zero-state hysteresis
model structure.

Ske1 =F(Sks i) + Wy
T\ . (1)
=Sk — (%) I + Wy

Vi = 8(Sk, i) + vk

(2)
= OCV(Sk) —+ Rik + th + Vg

where s is the SoC, i is the battery current, y is the battery termi-
nal voltage, R is the battery internal resistance, H is the hysteresis
value, and h is the hysteresis constant representing the sign of the
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Fig. 1. Discharge current input.
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where 7; is columbic efficiency (n;=1 for discharge, and 7; <1 for
charge), Tis the sampling period, and C is the nominal capacity. The
parameters w and v are independent, zero-mean, Gaussian noises
for the process and measurement, and their covariance values are
Rw and Ry, respectively. The function OCV(s;), the open-circuit volt-
age as a function of the SoC, can be computed as

OCV(Sk) =Ko + {:*1 + Ksz + K3 lH(Sk) + Ky 11](1 - Sk). (4)
k

2.2. Experiments

A lead-acid battery with a nominal voltage of 8V and a nomi-
nal capacity of 100 Ah was tested. An electronic load was used at
room temperature and could consume the battery current with an
accuracy of £0.3%. The battery terminal voltage and current were
measured by a DAQ system from National Instruments.

The battery was tested under two different current profiles
shown in Figs. 1 and 2. For each type of current profile, the bat-
tery was discharged or charged based on the constant-current pulse
and rest sequences. The battery was discharged from 100 A down
to 10 A. During charging, the battery was charged from 100 A down
to 10 A. Positive current indicates discharge, and negative current
indicates charge.

The battery terminal voltage decreased and increased with the
discharge and charge current profiles, respectively. The battery ter-
minal voltage outputs are shown in Figs. 3 and 4. Furthermore,
the SoC profiles for the battery were obtained via the Ah count-
ing method. Figs. 5 and 6 show these SoC profiles based on the
discharge and charge current profiles.
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Fig. 2. Charge current input.
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Fig. 3. Discharge voltage output.
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Fig. 4. Charge voltage output.

2.3. Model parameter identification

Model parameters were determined by applying the least-
squares method. The battery model output equation can be
represented by a regression model as expressed by
Ve =8k, ik)

= OCV(Sk) + Rik + th

=Ko+ I:—; + K58 + K3 ln(sk) + Ky 11’1(1 - Sk) + Rik + th
=[5 s om0 m-s i g hk}
x[Ko K; Ko Ks Ko R* R~ HJ|
=(pl€9

where i* and i~ are the currents for discharge and charge, respec-
tively; i;” isequal to iy if iy >0, whilei, is equal toiy ifi; < 0; otherwise
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Fig. 5. Discharge SoC result.
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Fig. 6. Charge SoC.

Table 1

Modelling result of battery parameters.

Ko 6.8143

K 6.4382 x 10—°
K> 3.0301

K3 0.045671

Ky 0.076233

R* —2.3626 x 102
R~ —2.5436 x 102
H —0.56082

i* and i~ are zero. Likewise, R* and R~ are the internal resistance
values of the battery for discharge and charge, respectively. For N
number of observations, Eq. (5) can be written as

Y = @6 (6)

where Y=[y1, ¥, ..., yn]T and @ = [T, oI, ..., o'1". As a result,
the parameters can be obtained from 9=(<I>T<D)*1N(I>TY for a non-
singular (®T®). For determination of the parameters, only non-zero
current observations were considered, because the zero-state hys-
teresis model was unable to represent the relaxation effect as a
description of the time constant when the battery voltage con-
verged to the steady-state value after a discharge or charge current
was pulsed [4].

The resulting parameters are given in Table 1. Modelling of
the discharge and charge using these parameters is shown in
Figs. 7 and 8, respectively. The results illustrate that the battery
model can represent the battery output voltages with respect to
discharge and charge currents with the exception of the relaxation
effect.

Time Update
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85, =18, 1.0,4)
(2) Error covariance
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Fig. 7. Modelling result under discharge.
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Fig. 8. Modelling result under charge.

3. State-of-charge estimation
3.1. Extended Kalman filter

Kalman filters are widely used in estimation problems [10]. For
the non-linear battery model in this study, the EKF was applied
to estimate the SoC of the battery. In order to apply the EKF, the
non-linear battery model in Egs. (1) and (2) was made linear by
a first-order Taylor-series expansion assuming f(-,-) and g(-,-) are
differentiable at all operating points (sy, ix). Then we can obtain:

Skpr ~ S8 i)+ A(si — 5) + wy o
=Aisk+ 8, i) — AkSE +wy
Ve ~88, i)+ Celsk —5,) + vk
= CeSic + 8655 i) — GiSy, + vk

(8)

™~

Measurement Update
(1) Kalman gain
= Cov;_kC,f'[C‘_Cov;kC: + Covu]"
(2) State estimate
5 =8 + L[y, —g(6,,i)]
(3) Error covariance
Cov;, =({ - L,C,)Cov;,

Fig. 9. Operation of extended Kalman filter.
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Table 2
EKF time update equations.

8 =fi1, i)
Py = A 1PiaAl | +Ru

Table 3
EKF measurement update equations.

L = P CT[GP CT +Ry]
S =8, +Llye — 865, . ik)]
Pl:r =(I- Lka)Pl:

where Ay, and C, are defined as

of (S, 1
Ay = f(al; k) 9)
k 5I<=§;
Ck — ag(Sk,lk) (-10)
8Sk o
k=5,

The operation of the EKF is shown in Fig. 9 [11,12]. First, the initial
state and error covariance values are determined. Then, the covari-
ance values are predicted using the model. After that, the state and
error covariance values are corrected using the output measure-
ment. The prediction and correction sequence was repeated every
time step except when the battery current was zero. The equations
describing the operation of the EKF are presented in Tables 2 and 3.

From the battery model in Egs. (7) and (8), the EKF time and
measurement update equations can be computed as follows:

s =500 - (25 )i (11)

Py =P 1 +Rw (12)

L =P CTGP CT + R, (13)

oy S (14)
(3) 5 1 =5

a am
S =5, +L

K R R . .
x yk7(1<0+§4 + K>3, +K3 In(8; )+KaIn(1 — 3;) + Rig+hyH)
k

(15)

P;-: =0- Lka)Pk_ (16)

3.1.1. State-of-charge estimation results using EKF

The SoC of the battery was estimated from the experimental data
and the EKF model. The initial values of the state and error covari-
ance, the process noise covariance, and the measurement noise
covariance used in the estimation are shown in Table 4. The SoC
estimation results are presented in Figs. 10 and 11.In Figs. 12 and 13,
the SoC estimation errors are shown to converge into a +5% error
band.

Table 4
Simulation conditions of SoC estimation.
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3.2. Adaptive extended Kalman filter (AEKF)

A Kalman filter basically assumes that the covariance of both the
process and the measurement noise are known; assumed covari-
ance values were used in Section 3.1.1. These covariance values
cannot, however, be precisely known. Moreover, improper covari-
ance values can result in large or divergent estimation errors. Thus,
in practice, these covariance values are often used as design param-
eters [13]. Otherwise, the covariance values can be estimated to
improve the performance of the Kalman filter by employing an
adaptive Kalman filter. Mehra [9] classified adaptive Kalman fil-
ter methods into four categories: Bayesian, maximum likelihood,
correlation, and covariance matching. These adaptive Kalman filter
methods have been applied to other applications, including an iner-
tial navigation system and a global positioning system [14,15]. In
this section, an AEKF employing the covariance matching approach
was applied to battery SoC estimation. The results obtained using
the AEKF were compared with the SoC estimation results obtained
using the EKF in Section 3.1.

In the covariance matching method, the innovations sequence,
which is a function of previous observations and state estimates, is
defined as

Ze =Yk — 85, i) (17)

Substituting the output model, Eq. (8), into (17), this innovation

sequence can be written as
z, ~ g8, i) + Celsi = 5,) — 85, k) + v (18)
= Ci(sk — 5, ) + v

From this innovation sequence, the theoretical covariance can
be obtained by taking the variance on both sides of Eq. (18):

Ry =GP Cl + Ry, (19)

Then, an estimate of Ry, can be obtained from Rzk, which is the
statistical sample variance estimate of Rz,

R"k = le - CszZCZ (20)

where Ti’zk can be computed by averaging inside a moving estima-
tion window of size N as follows:

k
~ 1
Ra=w Zz,-zf (21)

i=ig
whereiy =k — N+ 1is the first sample inside the estimation window.

Likewise, for an estimate of Rw,. the process noise, wy, can be
computed from Eq. (7), subtracting Eq. (11) as shown:

Wi = Skp1 = Siq — Sk + Sk (22)
This noise can be transformed as
Wi =Skt = S + ASp (23)

where Asp,; =31 —S$, 4. Then, the theoretical process noise
covariance can be obtained from:

Rwj, = Pry1 — P+ RAskH (24)

As a result, an estimate of Ry, can be computed from the statis-
tical sample variance estimate of Ry, ,, as follows:

k
N 1
ka :PIH»l _P’<+NZASJ AS]T (25)
j=jo
This can be approximated by substituting As; =Lz, and Rzk into
Egs. (15) and (21), respectively, to obtain:

ka ~ LkRZI( LITC- (26)

3.2.1. State-of-charge estimation results using AEKF

The same initial values that were used for the state, the state
error covariance, the process noise covariance, and the measure-
ment noise covariance in the EKF estimation were also used for the
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AEKF estimation. These values are shown in Table 4. It is important
to note that the two values for the process and measurement
noise covariance were adapted using Eqgs. (20) and (26). The SoC
estimation results are presented in Figs. 14-17. The SOC estimation
errors in Figs. 18 and 19 converge into about a +1% error band.
Figs. 20 and 21 show the difference between the average SoC
estimation errors for the EKF and the AEKF. The figures show that
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Fig. 18. SoC estimation error under discharge using AEKF; (a) whole view and (b)
enlarged view.
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Fig. 19. SoC estimation error under charge using AEKF; (a) whole view and (b)
enlarged view.

the AEKF results in smaller average SoC estimation errors than does
the EKF for the entire estimation time. The average SoC estimation
error is computed as follows:

k

o 1 -

Sav,k = k1 E IS;1 (27)
=0
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Fig. 20. Average SoC estimation errors under discharge using EKF and AEKF; (a)
whole view and (b) enlarged view.
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Fig. 21. Average SoC estimation errors under charge using EKF and AEKF; (a) whole
view and (b) enlarged view.
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Fig. 23. Comparison of average SOC estimation errors under charge using EKF with
several covariance values and AEKF.

Moreover, in order to obtain the effect of the process and mea-
surement noise covariance values on the EKF estimation, nine sets
of process and measurement covariance values are applied to the
SOCestimation. In Figs. 22 and 23, the average SoC estimation errors
for all nine sets of covariance values are compared with the estima-
tion errors obtained when using the AEKF. The AEKF results exhibit

smaller average SoC errors than do the EKF results for all nine sets
of covariance values.

4. Conclusions

In this study, the SoC of a lead-acid battery is estimated using the
AEKEF. The SoC estimation results obtained from the AEKF are com-
pared with those obtained from the EKF. The AEKF results exhibit
a smaller SoC estimation error than do the EKF, because the AEKF
can also estimate the process and measurement noise covariance
values which can lead to large or even divergent estimation errors.
Hence, the AEKF can reduce the SoC estimation error when working
with unknown process and measurement noise covariance values.
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