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a b s t r a c t

Lead-acid batteries are widely used in conventional internal-combustion-engined vehicles and in some
electric vehicles. In order to improve the longevity, performance, reliability, density and economics of the
batteries, a precise state-of-charge (SoC) estimation is required. The Kalman filter is one of the techniques
used to determine the SoC. This filter assumes an a priori knowledge of the process and measurement noise
vailable online 24 December 2008

eywords:
ead-acid battery
tate-of-charge
stimation

covariance values. Estimation errors can be large or even divergent when incorrect a priori covariance
values are utilized. These estimation errors can be reduced by using the adaptive Kalman filter, which
adaptively modifies the covariance. In this study, an adaptive extended Kalman filter (AEKF) method is
used to estimate the SoC. The AEKF can reduce the SoC estimation error, making it more reliable than
using a priori process and measurement noise covariance values.
ovariance
daptive extended Kalman filter

. Introduction

Lead-acid batteries, the oldest type of rechargeable battery,
ere invented in 1859 by the French physicist Gaston Planté [1].

ead-acid batteries are still widely used in electrical systems,
uch as those employed in conventional internal-combustion-
ngined vehicles and some electric vehicles. In order to improve
he longevity, performance, reliability, density and economics of
he batteries, an accurate state-of-charge (SoC) estimation is nec-
ssary [2]. For these reasons, several methods of estimating the SoC
ave been developed, e.g., coulomb counting, open-circuit voltage
OCV) measurement, impedance spectroscopy, electromotive force,
uzzy logic, and the Kalman filter [1]. The Kalman filter can estimate
he SoC dynamically by means of a battery model [3]. Non-linear
alman filters, such as extended Kalman filters (EKF) [3–6] and
igma-point Kalman filters [7,8], have been applied for non-linear
iscrete battery models.

Generally, the Kalman filter assumes that the covariance of the
rocess and the measurement noise are already known. Covari-

nce values cannot, however, be identified exactly in most practical
pplications. Furthermore, estimation errors can be large or even
iverge when an incorrect covariance is used [9]. None of the pre-
ious studies on SoC estimation has considered this covariance
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problem; the covariance values of the process and measurement
noise are assumed to be a priori known [3–5,7,8] or determined by
trial-and-error from experimental studies [6]. Nevertheless, these
approaches do not provide a practical solution to the problem.

This study evaluates the use of incorrect a priori covariance val-
ues for SoC estimation using the EKF. The SoC estimation error
caused by the covariance problem is reduced by adaptively modi-
fying the covariance values with an adaptive Kalman filter [9].

2. Battery model

2.1. Battery model structure

A battery model is required in order to apply the Kalman filter to
estimation of the SoC. In the present study, the zero-state hysteresis
model structure was used for a discrete lead-acid non-linear bat-
tery model [4,5]. Eqs. (1) and (2) represent the zero-state hysteresis
model structure.

sk+1 = f (sk, ik) + wk

= sk −
(

�iT

C

)
ik + wk

(1)

yk = g(sk, ik) + vk
= OCV(sk) + Rik + hkH + vk

(2)

where s is the SoC, i is the battery current, y is the battery termi-
nal voltage, R is the battery internal resistance, H is the hysteresis
value, and h is the hysteresis constant representing the sign of the
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Fig. 3. Discharge voltage output.
Fig. 1. Discharge current input.

ysteresis effect according to the current. For some ε sufficiently
mall and positive:

k =
{

−sgn(ik),
∣∣ik∣∣ > ε

hk−1,
∣∣ik∣∣ ≤ ε

. (3)

here �i is columbic efficiency (�i = 1 for discharge, and �i ≤ 1 for
harge), T is the sampling period, and C is the nominal capacity. The
arameters w and v are independent, zero-mean, Gaussian noises
or the process and measurement, and their covariance values are
w and Rv, respectively. The function OCV(sk), the open-circuit volt-
ge as a function of the SoC, can be computed as

CV(sk) = K0 + K1

sk
+ K2sk + K3 ln(sk) + K4 ln(1 − sk). (4)

.2. Experiments

A lead-acid battery with a nominal voltage of 8 V and a nomi-
al capacity of 100 Ah was tested. An electronic load was used at
oom temperature and could consume the battery current with an
ccuracy of ±0.3%. The battery terminal voltage and current were
easured by a DAQ system from National Instruments.
The battery was tested under two different current profiles

hown in Figs. 1 and 2. For each type of current profile, the bat-
ery was discharged or charged based on the constant-current pulse
nd rest sequences. The battery was discharged from 100 A down
o 10 A. During charging, the battery was charged from 100 A down
o 10 A. Positive current indicates discharge, and negative current
ndicates charge.

The battery terminal voltage decreased and increased with the

ischarge and charge current profiles, respectively. The battery ter-
inal voltage outputs are shown in Figs. 3 and 4. Furthermore,

he SoC profiles for the battery were obtained via the Ah count-
ng method. Figs. 5 and 6 show these SoC profiles based on the
ischarge and charge current profiles.

Fig. 2. Charge current input.
Fig. 4. Charge voltage output.

2.3. Model parameter identification

Model parameters were determined by applying the least-
squares method. The battery model output equation can be
represented by a regression model as expressed by

yk = g(sk, ik)

= OCV(sk) + Rik + hkH

= K0 + K1

sk
+ K2sk + K3 ln(sk) + K4 ln(1 − sk) + Rik + hkH

=
[

1
1
sk

sk ln(sk) ln(1 − sk) i+
k

i−
k

hk

]

× [ K0 K1 K2 K3 K4 R+ R− H ]T

(5)
= ϕT
k
�

where i+ and i− are the currents for discharge and charge, respec-
tively; i+

k
is equal to ik if ik > 0, while i−

k
is equal to ik if ik < 0; otherwise

Fig. 5. Discharge SoC result.
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Fig. 6. Charge SoC.

Table 1
Modelling result of battery parameters.

K0 6.8143
K1 6.4382 × 10−5

K2 3.0301
K3 0.045671
K4 0.076233
R+ −2.3626 × 10−2

R− −2
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t
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Fig. 7. Modelling result under discharge.

= Aksk + f (ŝ+
k

, ik) − Akŝ+
k

+ wk

− −
−2.5436 × 10
−0.56082

+ and i− are zero. Likewise, R+ and R− are the internal resistance
alues of the battery for discharge and charge, respectively. For N
umber of observations, Eq. (5) can be written as

= ˚� (6)

here Y = [y1, y2, . . ., yN]T and ˚ = [ϕT
1, ϕT

2, . . . , ϕT
N]

T
. As a result,

he parameters can be obtained from � = (ФTФ)−1ФTY for a non-
ingular (ФTФ). For determination of the parameters, only non-zero
urrent observations were considered, because the zero-state hys-
eresis model was unable to represent the relaxation effect as a
escription of the time constant when the battery voltage con-
erged to the steady-state value after a discharge or charge current
as pulsed [4].

The resulting parameters are given in Table 1. Modelling of
he discharge and charge using these parameters is shown in
igs. 7 and 8, respectively. The results illustrate that the battery
odel can represent the battery output voltages with respect to
ischarge and charge currents with the exception of the relaxation
ffect.

Fig. 9. Operation of exten
Fig. 8. Modelling result under charge.

3. State-of-charge estimation

3.1. Extended Kalman filter

Kalman filters are widely used in estimation problems [10]. For
the non-linear battery model in this study, the EKF was applied
to estimate the SoC of the battery. In order to apply the EKF, the
non-linear battery model in Eqs. (1) and (2) was made linear by
a first-order Taylor-series expansion assuming f(·,·) and g(·,·) are
differentiable at all operating points (sk, ik). Then we can obtain:

sk+1 ≈ f (ŝ+
k

, ik) + Ak(sk − ŝ+
k

) + wk
(7)
yk ≈ g(ŝ
k

, ik) + Ck(sk − ŝ
k

) + vk

= Cksk + g(ŝ−
k

, ik) − Ckŝ−
k

+ vk

(8)

ded Kalman filter.
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Table 2
EKF time update equations.

ŝ−
k

= f (ŝk−1, ik−1)

P−
k

= Ak−1Pk−1AT
k−1

+ Rw

Table 3
EKF measurement update equations.

L − T − T −1

ŝ
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w
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ŝ
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Fig. 10. SoC estimation under discharge using EKF.

Fig. 11. SoC estimation under charge using EKF.

Fig. 12. SoC estimation error under discharge using EKF.
k = P
k

C
k

[CkP
k

C
k

+ Rv]
+
k

= ŝ−
k

+ Lk[yk − g(ŝ−
k

, ik)]
+
k

= (I − LkCk)P−
k

here Ak and Ck are defined as

k = ∂f (sk, ik)
∂sk

∣∣∣∣
sk=ŝ+

k

(9)

k = ∂g(sk, ik)
∂sk

∣∣∣∣
sk=ŝ−

k

(10)

The operation of the EKF is shown in Fig. 9 [11,12]. First, the initial
tate and error covariance values are determined. Then, the covari-
nce values are predicted using the model. After that, the state and
rror covariance values are corrected using the output measure-
ent. The prediction and correction sequence was repeated every

ime step except when the battery current was zero. The equations
escribing the operation of the EKF are presented in Tables 2 and 3.

From the battery model in Eqs. (7) and (8), the EKF time and
easurement update equations can be computed as follows:

−
k

= ŝ+
k−1 −

(
�iT

C

)
ik−1 (11)

−
k

= Pk−1 + Rw (12)

k = P−
k

CT
k [CkP−

k
CT

k + Rv]
−1

(13)

k = − K1

(ŝ−)2
+ K2 + K3

ŝ−
k

− K4

1 − ŝ−
k

(14)

+
k

= ŝ−
k

+ Lk

×
[

yk−(K0+K1

ŝ−
k

+ K2ŝ−
k
+K3 ln(ŝ−

k
)+K4 ln(1 − ŝ−

k
) + Rik+hkH)

]

(15)

+
k

= (I − LkCk)P−
k

(16)

.1.1. State-of-charge estimation results using EKF
The SoC of the battery was estimated from the experimental data

nd the EKF model. The initial values of the state and error covari-
nce, the process noise covariance, and the measurement noise

ovariance used in the estimation are shown in Table 4. The SoC
stimation results are presented in Figs. 10 and 11. In Figs. 12 and 13,
he SoC estimation errors are shown to converge into a ±5% error
and.

able 4
imulation conditions of SoC estimation.

0 50%
0 1
w 1
v 1

Fig. 13. SoC estimation error under charge using EKF.
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3.2.1. State-of-charge estimation results using AEKF
The same initial values that were used for the state, the state

error covariance, the process noise covariance, and the measure-
ment noise covariance in the EKF estimation were also used for the

Fig. 14. SoC estimation under discharge using AEKF.

Fig. 15. SoC estimation under charge using AEKF.

Fig. 16. Battery terminal voltage estimation result under discharge using AEKF.
10 J. Han et al. / Journal of Pow

.2. Adaptive extended Kalman filter (AEKF)

A Kalman filter basically assumes that the covariance of both the
rocess and the measurement noise are known; assumed covari-
nce values were used in Section 3.1.1. These covariance values
annot, however, be precisely known. Moreover, improper covari-
nce values can result in large or divergent estimation errors. Thus,
n practice, these covariance values are often used as design param-
ters [13]. Otherwise, the covariance values can be estimated to
mprove the performance of the Kalman filter by employing an
daptive Kalman filter. Mehra [9] classified adaptive Kalman fil-
er methods into four categories: Bayesian, maximum likelihood,
orrelation, and covariance matching. These adaptive Kalman filter
ethods have been applied to other applications, including an iner-

ial navigation system and a global positioning system [14,15]. In
his section, an AEKF employing the covariance matching approach
as applied to battery SoC estimation. The results obtained using

he AEKF were compared with the SoC estimation results obtained
sing the EKF in Section 3.1.

In the covariance matching method, the innovations sequence,
hich is a function of previous observations and state estimates, is
efined as

k = yk − g(ŝ−
k

, ik) (17)

Substituting the output model, Eq. (8), into (17), this innovation
equence can be written as

zk ≈ g(ŝ−
k

, ik) + Ck(sk − ŝ−
k

) − g(ŝ−
k

, ik) + vk

= Ck(sk − ŝ−
k

) + vk

(18)

From this innovation sequence, the theoretical covariance can
e obtained by taking the variance on both sides of Eq. (18):

zk
= CkP−

k
CT

k + Rvk
(19)

Then, an estimate of Rvk
can be obtained from R̂zk

, which is the
tatistical sample variance estimate of Rzk

:

ˆvk
= R̂zk

− CkP−
k

CT
k (20)

here R̂zk
can be computed by averaging inside a moving estima-

ion window of size N as follows:

ˆ zk
= 1

N

k∑
i=i0

ziz
T
i (21)

here i0 = k − N + 1 is the first sample inside the estimation window.
Likewise, for an estimate of Rwk

, the process noise, wk, can be
omputed from Eq. (7), subtracting Eq. (11) as shown:

k = sk+1 − ŝ−
k+1 − sk + ŝk (22)

This noise can be transformed as

k = s̃k+1 − s̃k + �sk+1 (23)

here �sk+1 = ŝk+1 − ŝ−
k+1. Then, the theoretical process noise

ovariance can be obtained from:

wk
= Pk+1 − Pk + R�sk+1

(24)

As a result, an estimate of Rwk
can be computed from the statis-

ical sample variance estimate of R�sk+1
as follows:

ˆwk
= Pk+1 − Pk + 1

N

k∑
�sj �sT

j (25)
j=j0

This can be approximated by substituting �sk = Lkzk and R̂zk
into

qs. (15) and (21), respectively, to obtain:

ˆwk
≈ LkR̂zk

LT
k (26)
urces 188 (2009) 606–612
Fig. 17. Battery terminal voltage estimation under charge using AEKF.
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EKF estimation. These values are shown in Table 4. It is important
o note that the two values for the process and measurement

oise covariance were adapted using Eqs. (20) and (26). The SoC
stimation results are presented in Figs. 14–17. The SOC estimation
rrors in Figs. 18 and 19 converge into about a ±1% error band.
igs. 20 and 21 show the difference between the average SoC
stimation errors for the EKF and the AEKF. The figures show that

ig. 18. SoC estimation error under discharge using AEKF; (a) whole view and (b)
nlarged view.

ig. 19. SoC estimation error under charge using AEKF; (a) whole view and (b)
nlarged view.
urces 188 (2009) 606–612 611

the AEKF results in smaller average SoC estimation errors than does
the EKF for the entire estimation time. The average SoC estimation

error is computed as follows:

s̃av,k = 1
k + 1

k∑
j=0

|s̃j| (27)

Fig. 20. Average SoC estimation errors under discharge using EKF and AEKF; (a)
whole view and (b) enlarged view.

Fig. 21. Average SoC estimation errors under charge using EKF and AEKF; (a) whole
view and (b) enlarged view.
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Fig. 22. Comparison of the average SoC estimation errors under discharge using EKF
with several covariance values and AEKF.
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ig. 23. Comparison of average SOC estimation errors under charge using EKF with
everal covariance values and AEKF.

Moreover, in order to obtain the effect of the process and mea-

urement noise covariance values on the EKF estimation, nine sets
f process and measurement covariance values are applied to the
OC estimation. In Figs. 22 and 23, the average SoC estimation errors
or all nine sets of covariance values are compared with the estima-
ion errors obtained when using the AEKF. The AEKF results exhibit

[

[

[
[

urces 188 (2009) 606–612

smaller average SoC errors than do the EKF results for all nine sets
of covariance values.

4. Conclusions

In this study, the SoC of a lead-acid battery is estimated using the
AEKF. The SoC estimation results obtained from the AEKF are com-
pared with those obtained from the EKF. The AEKF results exhibit
a smaller SoC estimation error than do the EKF, because the AEKF
can also estimate the process and measurement noise covariance
values which can lead to large or even divergent estimation errors.
Hence, the AEKF can reduce the SoC estimation error when working
with unknown process and measurement noise covariance values.
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